EconPapers    
Economics at your fingertips  
 

Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire

Oleksii Mostovyi

Stochastic Processes and their Applications, 2020, vol. 130, issue 7, 4444-4469

Abstract: In an incomplete model, where under an appropriate numéraire, the stock price process is driven by a sigma-bounded semimartingale, we investigate the behavior of the expected utility maximization problem under small perturbations of the numéraire. We establish a quadratic approximation of the value function and a first-order expansion of the terminal wealth. Relying on a description of the base return process in terms of its semimartingale characteristics, we also construct wealth processes and nearly optimal strategies that allow for matching the primal value function up to the second order. We also link perturbations of the numéraire to distortions of the finite-variation part and martingale part of the stock price return and characterize the asymptotic expansions in terms of the risk-tolerance wealth process.

Keywords: Sensitivity analysis; Utility maximization; Semimartingale characteristics; Sherman–Morrison formula; Envelope theorem; Numéraire (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918304071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:7:p:4444-4469

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.01.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:4444-4469