Lower bound for local oscillations of Hermite processes
Antoine Ayache
Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4593-4607
Abstract:
The most known example of a class of non-Gaussian stochastic processes which belongs to the homogeneous Wiener chaos of an arbitrary order N>1 is probably Hermite processes of rank N. They generalize fractional Brownian motion (fBm) and Rosenblatt process in a natural way. They were introduced several decades ago. Yet, in contrast with fBm and many other Gaussian and stable stochastic processes and fields related to it, few results on path behavior of Hermite processes are available in the literature. For instance the natural issue of whether or not their paths are nowhere differentiable functions has not yet been solved even in the most simple case of the Rosenblatt process. The goal of our article is to derive a quasi-optimal lower bound for the asymptotic behavior of local oscillations of paths of Hermite processes of any rank N, which, among other things, shows that these paths are nowhere differentiable functions.
Keywords: Wiener chaos; Self-similar process; Rosenblatt process; Path behavior; Nowhere differentiability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919302066
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4593-4607
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.01.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().