High excursions of Bessel and related random processes
Vladimir Piterbarg () and
Igor V. Rodionov
Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4859-4872
Abstract:
Asymptotic behavior of large excursions probabilities is evaluated for Euclidean norm of a wide class of Gaussian non-stationary vector processes with independent identically distributed components. It is assumed that the components have means zero and variances reaching its absolute maximum at only one point of the considered time interval. The Bessel process is an important example of such processes.
Keywords: Bessel process; Gaussian process; High excursions; Pickands’ constant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919304181
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4859-4872
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.02.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().