Regularity, continuity and approximation of isotropic Gaussian random fields on compact two-point homogeneous spaces
Galatia Cleanthous,
Athanasios G. Georgiadis,
Annika Lang and
Emilio Porcu
Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4873-4891
Abstract:
Gaussian random fields defined over compact two-point homogeneous spaces are considered and Sobolev regularity and Hölder continuity are explored through spectral representations. It is shown how spectral properties of the covariance function associated to a given Gaussian random field are crucial to determine such regularities and geometric properties. Furthermore, fast approximations of random fields on compact two-point homogeneous spaces are derived by truncation of the series expansion, and a suitable bound for the error involved in such an approximation is provided.
Keywords: Angular power spectrum; Approximation; Compact two-point homogeneous spaces; Covariance kernel; Hölder regularity; Random fields (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919305332
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4873-4891
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.02.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().