Functional central limit theorem for random walks in random environment defined on regular trees
Andrea Collevecchio,
Masato Takei and
Yuma Uematsu
Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4892-4909
Abstract:
We study Random Walks in an i.i.d. Random Environment (RWRE) defined on b-regular trees. We prove a functional central limit theorem (FCLT) for transient processes, under a moment condition on the environment. We emphasize that we make no uniform ellipticity assumptions. Our approach relies on regenerative levels, i.e. levels that are visited exactly once. On the way, we prove that the distance between consecutive regenerative levels have a geometrically decaying tail. In the second part of this paper, we apply our results to Linearly Edge-Reinforced Random Walk (LERRW) to prove FCLT when the process is defined on b-regular trees, with b≥4, substantially improving the results of the first author (see Theorem 3 of Collevecchio (2006)).
Keywords: Random walks in random environment; Self-interacting random walks; Functional central limit theorem (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919300730
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4892-4909
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.02.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().