EconPapers    
Economics at your fingertips  
 

Stein’s method for multivariate Brownian approximations of sums under dependence

Mikołaj J. Kasprzak

Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 4927-4967

Abstract: We use Stein’s method to obtain a bound on the distance between scaled p-dimensional random walks and a p-dimensional (correlated) Brownian motion. We consider dependence schemes including those in which the summands in scaled sums are weakly dependent and their p components are strongly correlated. As an example application, we prove a functional limit theorem for exceedances in an m-scans process, together with a bound on the rate of convergence. We also find a bound on the rate of convergence of scaled U-statistics to Brownian motion, representing an example of a sum of strongly dependent terms.

Keywords: Stein’s method, Functional convergence, Brownian motion, Exceedances of the scans process, U-statistics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919300869
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:4927-4967

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.02.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:4927-4967