EconPapers    
Economics at your fingertips  
 

Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method

Ankush Agarwal and Julien Claisse

Stochastic Processes and their Applications, 2020, vol. 130, issue 8, 5006-5036

Abstract: We study semi-linear elliptic PDEs with polynomial non-linearity in bounded domains and provide a probabilistic representation of their solution using branching diffusion processes. When the non-linearity involves the unknown function but not its derivatives, we extend previous results in the literature by showing that our probabilistic representation provides a solution to the PDE without assuming its existence. In the general case, we derive a new representation of the solution by using marked branching diffusion processes and automatic differentiation formulas to account for the non-linear gradient term. We consider several examples and estimate their solution by using the Monte Carlo method.

Keywords: Automatic differentiation formula; Branching diffusion processes; Elliptic; Monte Carlo method; Partial differential equation; Semi-linear (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920301071
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:8:p:5006-5036

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.02.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:5006-5036