The Constrained-degree percolation model
B.N.B. de Lima,
R. Sanchis,
D.C. dos Santos,
V. Sidoravicius and
R. Teodoro
Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5492-5509
Abstract:
In the Constrained-degree percolation model on a graph (V,E) there are a sequence, (Ue)e∈E, of i.i.d. random variables with distribution U[0,1] and a positive integer k. Each bond e tries to open at time Ue, it succeeds if both its end-vertices would have degrees at most k−1. We prove a phase transition theorem for this model on the square lattice L2, as well as on the d-ary regular tree. We also prove that on the square lattice the infinite cluster is unique in the supercritical phase.
Keywords: Phase transition; Constrained degree percolation; Uniqueness (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919305265
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5492-5509
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.03.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().