Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations
Patrik Andersson,
Arturo Kohatsu-Higa and
Tomooki Yuasa
Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5543-5574
Abstract:
In this article, following the paradigm of bias–variance trade-off philosophy, we derive parametrix expansions of order two, based on the Euler–Maruyama scheme with random partitions, for the purpose of constructing an unbiased simulation method for multidimensional stochastic differential equations. These formulas lead to Monte Carlo simulation methods which can be easily parallelized. The second order method proposed here requires further regularity of coefficients in comparison with the first order method but achieves finite moments even when Poisson sampling is used for the partitions, in contrast to Andersson and Kohatsu-Higa (2017). Moreover, using an exponential scaling technique one achieves an unbiased simulation method which resembles a space importance sampling technique which significantly improves the efficiency of the proposed method. A hint of how to derive higher order expansions is also presented.
Keywords: Parametrix; Stochastic differential equations; Expansions; Monte Carlo methods (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920301927
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5543-5574
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.03.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().