Fundamental properties of process distances
Julio Backhoff Veraguas,
Mathias Beiglböck,
Manu Eder and
Alois Pichler
Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5575-5591
Abstract:
To quantify the difference of distinct stochastic processes it is not sufficient to consider the distance of their states and corresponding probabilities. Instead, the information, which evolves and accumulates over time and which is mathematically encoded by filtrations, has to be accounted for as well. The nested distance, also known as bicausal Wasserstein distance, recognizes this component and involves the filtration properly. This distance is of emerging importance due to its applications in stochastic analysis, stochastic programming, mathematical economics and other disciplines.
Keywords: Optimal transport; Nested distance; Martingales; Causal Wasserstein distance; Information topology (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920301939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5575-5591
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.03.017
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().