EconPapers    
Economics at your fingertips  
 

On the maximum increase and decrease of one-dimensional diffusions

Paavo Salminen and Pierre Vallois

Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5592-5604

Abstract: In this paper the joint distribution of the maximum increase and the maximum decrease up to a first hitting time is calculated for a regular one-dimensional diffusion. Moreover, it is shown that the process given by the maximum decrease when the hitting level is the “time” parameter is a pure jump Markov process and its generator is found. As examples, Brownian motion and three dimensional Bessel process are analyzed more in detail.

Keywords: Maximum drawdown; Maximum drawup; Optional sampling; h-transform; Brownian motion with drift; Geometric Brownian motion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919303758
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5592-5604

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.04.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:9:p:5592-5604