Finite-time blow-up of a non-local stochastic parabolic problem
Nikos I. Kavallaris and
Yubin Yan
Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5605-5635
Abstract:
The main aim of the current work is the study of the conditions under which (finite-time) blow-up of a non-local stochastic parabolic problem occurs. We first establish the existence and uniqueness of the local-in-time weak solution for such problem. The first part of the manuscript deals with the investigation of the conditions which guarantee the occurrence of noise-induced blow-up. In the second part we first prove the C1-spatial regularity of the solution. Then, based on this regularity result, and using a strong positivity result we derive, for first in the literature of SPDEs, a Hopf’s type boundary value point lemma. The preceding results together with Kaplan’s eigenfunction method are then employed to provide a (non-local) drift term induced blow-up result. In the last part of the paper, we present a method which provides an upper bound of the probability of (non-local) drift term induced blow-up.
Keywords: Non-local; Stochastic partial differential equations; Strong positivity; Hopf’s lemma; Blow-up; Exponential Brownian functionals (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920302052
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5605-5635
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.04.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().