Continuity for the asymptotic shape in the frog model with random initial configurations
Naoki Kubota
Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5709-5734
Abstract:
We consider the so-called frog model with random initial configurations, which is described by the following evolution mechanism of simple random walks on the multidimensional cubic lattice: Some particles are randomly assigned to any site of the multidimensional cubic lattice. Initially, only particles at the origin are active and they independently perform simple random walks. The other particles are sleeping and do not move at first. When sleeping particles are hit by an active particle, they become active and start doing independent simple random walks. An interest of this model is how initial configurations affect the asymptotic shape of the set of all sites visited by active particles up to a certain time. Thus, in this paper, we prove continuity for the asymptotic shape in the law of the initial configuration.
Keywords: Frog model; Egg model; Simple random walk; Random environment; Asymptotic shape; Time constant (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919306349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5709-5734
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.04.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().