EconPapers    
Economics at your fingertips  
 

Weak approximation of the complex Brownian sheet from a Lévy sheet and applications to SPDEs

Xavier Bardina, Juan Pablo Márquez and Lluís Quer-Sardanyons

Stochastic Processes and their Applications, 2020, vol. 130, issue 9, 5735-5767

Abstract: We consider a Lévy process in the plane and we use it to construct a family of complex-valued random fields that we show to converge in law, in the space of continuous functions, to a complex Brownian sheet. We apply this result to obtain weak approximations of the random field solution to a semilinear one-dimensional stochastic heat equation driven by the space–time white noise.

Keywords: Brownian sheet; Lévy sheet; Stochastic heat equation; Weak approximation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919304478
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:130:y:2020:i:9:p:5735-5767

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.04.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:130:y:2020:i:9:p:5735-5767