The Breuer–Major theorem in total variation: Improved rates under minimal regularity
Ivan Nourdin,
David Nualart and
Giovanni Peccati
Stochastic Processes and their Applications, 2021, vol. 131, issue C, 1-20
Abstract:
In this paper we prove an estimate for the total variation distance, in the framework of the Breuer–Major theorem, using the Malliavin–Stein method, assuming the underlying function g to be once weakly differentiable with g and g′ having finite moments of order four with respect to the standard Gaussian density. This result is proved by a combination of Gebelein’s inequality and some novel estimates involving Malliavin operators.
Keywords: Breuer–Major theorem; Integration by Parts; Rate of Convergence; Malliavin–Stein approach (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920303574
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:131:y:2021:i:c:p:1-20
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.08.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().