Statistical inference of subcritical strongly stationary Galton–Watson processes with regularly varying immigration
Mátyás Barczy,
Bojan Basrak,
Péter Kevei,
Gyula Pap and
Hrvoje Planinić
Stochastic Processes and their Applications, 2021, vol. 132, issue C, 33-75
Abstract:
We describe the asymptotic behavior of the conditional least squares estimator of the offspring mean for subcritical strongly stationary Galton–Watson processes with regularly varying immigration with tail index α∈(1,2). The limit law is the ratio of two dependent stable random variables with indices α∕2 and 2α∕3, respectively, and it has a continuously differentiable density function. We use point process technique in the proofs.
Keywords: Galton–Watson process with immigration; Conditional least squares estimator; Regularly varying distribution; Strong stationarity; Point process (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492030394X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:132:y:2021:i:c:p:33-75
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.10.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().