Hypothesis testing for a Lévy-driven storage system by Poisson sampling
M. Mandjes and
L. Ravner
Stochastic Processes and their Applications, 2021, vol. 133, issue C, 41-73
Abstract:
This paper focuses on hypothesis testing for the input of a Lévy-driven storage system by sampling of the storage level. As the likelihood is not explicit we propose two tests that rely on transformation of the data. The first approach uses i.i.d. ‘quasi-busy-periods’ between observations of zero workload. The distribution of the duration of quasi-busy-periods is determined. The second method is a conditional likelihood ratio test based on the Bernoulli events of observing a zero or positive workload, conditional on the previous workload. Performance analysis is presented for both tests along with speed-of-convergence results, that are of independent interest.
Keywords: Lévy-driven storage system; Poisson sampling; Hypothesis testing; Convergence to stationarity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920304208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:133:y:2021:i:c:p:41-73
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.11.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().