Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics
Arnab Ganguly and
P. Sundar
Stochastic Processes and their Applications, 2021, vol. 133, issue C, 74-110
Abstract:
The paper studies asymptotics of inhomogeneous integral functionals of an ergodic diffusion process under the effect of discretization. Convergence to the corresponding functionals of the invariant distribution is shown for suitably chosen discretization steps, and the fluctuations are analyzed through central limit theorem and moderate deviation principle. The results will be particularly useful for understanding accuracy of an Euler discretization based numerical scheme for approximating functionals of invariant distribution of an ergodic diffusion. This is an infinite-time horizon problem, and the accuracy of numerical schemes in this context are comparatively much less studied than the ones used for generating approximate trajectories of diffusions over finite time intervals. The potential applications of these results also extend to other areas including mathematical physics, parameter inference of ergodic diffusions and analysis of multiscale dynamical systems with averaging.
Keywords: Estimation of invariant distributions; Ergodic diffusions; Euler approximation; Central limit theorem; Large and moderate deviations; Stochastic algorithms (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920304075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:133:y:2021:i:c:p:74-110
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.10.009
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().