EconPapers    
Economics at your fingertips  
 

Non-semimartingale solutions of reflected BSDEs and applications to Dynkin games

Tomasz Klimsiak

Stochastic Processes and their Applications, 2021, vol. 134, issue C, 208-239

Abstract: We introduce a new class of reflected backward stochastic differential equations with two càdlàg barriers, which need not satisfy any separation conditions. For that reason, in general, the solutions are not semimartingales. We prove existence, uniqueness and approximation results for solutions of equations defined on general filtered probability spaces. Applications to nonlinear Dynkin games are given.

Keywords: Reflected backward stochastic differential equations; Dynkin games (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920304385
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:134:y:2021:i:c:p:208-239

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2020.12.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:134:y:2021:i:c:p:208-239