Optimal stationary markings
Bartłomiej Błaszczyszyn and
Christian Hirsch
Stochastic Processes and their Applications, 2021, vol. 138, issue C, 153-185
Abstract:
Many specific problems ranging from theoretical probability to applications in statistical physics, combinatorial optimization and communications can be formulated as an optimal tuning of local parameters in large systems of interacting particles. Using the framework of stationary point processes in the Euclidean space, we pose it as a problem of an optimal stationary marking of a given stationary point process. The quality of a given marking is evaluated in terms of scores calculated in a covariant manner for all points as a function of the proposed marked configuration. In the absence of a total order of the configurations of scores, we identify intensity-optimality and local optimality as two natural ways for defining optimal stationary marking. We derive tightness and integrability conditions under which intensity-optimal markings exist and further stabilization conditions making them equivalent to locally optimal ones. We present examples motivating the proposed, general framework. Finally, we discuss various possible approaches leading to uniqueness results.
Keywords: Marking; Caching; Gibbs; Tightness; Phase transition; Stationary point process (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921000508
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:138:y:2021:i:c:p:153-185
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.04.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().