Limit theorems for topological invariants of the dynamic multi-parameter simplicial complex
Takashi Owada,
Gennady Samorodnitsky and
Gugan Thoppe
Stochastic Processes and their Applications, 2021, vol. 138, issue C, 56-95
Abstract:
The topological study of existing random simplicial complexes is non-trivial and has led to several seminal works. However, the applicability of such studies is limited since a single parameter usually governs the randomness in these models. With this in mind, we focus here on the topology of the recently proposed multi-parameter random simplicial complex. In particular, we introduce a dynamic variant of this model and look at how its topology evolves. In this dynamic setup, the temporal evolution of simplices is determined by stationary and possibly non-Markovian processes with a renewal structure. Special cases of this setup include the dynamic versions of the clique complex and the Linial–Meshulam complex. Our key result concerns the regime where the face-count of a particular dimension dominates. We show that the Betti number corresponding to this dimension and the Euler characteristic satisfy a functional strong law of large numbers and a functional central limit theorem. Surprisingly, in the latter result, the limiting process depends only upon the dynamics in the smallest non-trivial dimension.
Keywords: Functional central limit theorem; Functional strong law of large numbers; Betti number; Euler characteristic; Multi-parameter simplicial complex (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921000557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:138:y:2021:i:c:p:56-95
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.04.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().