A critical branching process with immigration in random environment
V.I. Afanasyev
Stochastic Processes and their Applications, 2021, vol. 139, issue C, 110-138
Abstract:
A Galton–Watson branching process with immigration evolving in a random environment is considered. Its associated random walk is assumed to be oscillating. We prove a functional limit theorem in which the process under consideration is normalized by a random coefficient depending on the random environment only. The distribution of the limiting process is described in terms of a strictly stable Levy process and a sequence of independent and identically distributed random variables which is independent of this process.
Keywords: Branching process in random environment; Branching process with immigration; Functional limit theorem (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921000739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:139:y:2021:i:c:p:110-138
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.05.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().