EconPapers    
Economics at your fingertips  
 

Concentration on Poisson spaces via modified Φ-Sobolev inequalities

Anna Gusakova, Holger Sambale and Christoph Thäle

Stochastic Processes and their Applications, 2021, vol. 140, issue C, 216-235

Abstract: Concentration properties of functionals of general Poisson processes are studied. Using a modified Φ-Sobolev inequality a recursion scheme for moments is established, which is of independent interest. This is applied to derive moment and concentration inequalities for functionals on abstract Poisson spaces. Applications of the general results in stochastic geometry, namely Poisson cylinder models and Poisson random polytopes, are presented as well.

Keywords: Concentration inequalities; Lp-estimates; Modified Φ-Sobolev inequalities; Poisson processes; Stochastic geometry (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001022
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:140:y:2021:i:c:p:216-235

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2021.06.009

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:140:y:2021:i:c:p:216-235