EconPapers    
Economics at your fingertips  
 

Irreducible decomposition for Markov processes

Kazuhiro Kuwae

Stochastic Processes and their Applications, 2021, vol. 140, issue C, 339-356

Abstract: We prove an irreducible decomposition for Markov processes associated with quasi-regular symmetric Dirichlet forms or local semi-Dirichlet forms under the absolute continuity condition of transition probability with respect to the underlying measure. We do not assume the conservativeness nor the existence of invariant measures for the processes. As applications, we establish a concrete expression for Chacon–Ornstein type ratio ergodic theorem for such Markov processes and show a compactness of semi-groups under the Green-tightness of measures in the framework of symmetric resolvent strong Feller processes without irreducibility.

Keywords: Semi-Dirichlet forms; Ergodicity; Irreducibility; Absolute continuity condition; Quasi-Lindelöf property; Chacon–Ornstein ergodic theorem (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001058
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:140:y:2021:i:c:p:339-356

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2021.06.012

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:140:y:2021:i:c:p:339-356