EconPapers    
Economics at your fingertips  
 

Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs

Mingshang Hu and Falei Wang

Stochastic Processes and their Applications, 2021, vol. 141, issue C, 139-171

Abstract: In this paper, we prove a convergence theorem for singular perturbations problems for a class of fully nonlinear parabolic partial differential equations (PDEs) with ergodic structures. The limit function is represented as the viscosity solution to a fully nonlinear degenerate PDEs. Our approach is mainly based on G-stochastic analysis argument. As a byproduct, we also establish the averaging principle for stochastic differential equations driven by G-Brownian motion (G-SDEs) with two time-scales. The results extend Khasminskii’s averaging principle to nonlinear case.

Keywords: Singular perturbation; Averaging principle; Nonlinear PDE; G-Brownian motion (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001125
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:141:y:2021:i:c:p:139-171

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2021.07.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:141:y:2021:i:c:p:139-171