EconPapers    
Economics at your fingertips  
 

Wong–Zakai approximations for quasilinear systems of Itô’s type stochastic differential equations

Alberto Lanconelli and Ramiro Scorolli

Stochastic Processes and their Applications, 2021, vol. 141, issue C, 57-78

Abstract: We extend to the multidimensional case a Wong–Zakai-type theorem proved by Hu and Øksendal (1996) for scalar quasi-linear Itô stochastic differential equations (SDEs). More precisely, with the aim of approximating the solution of a quasilinear system of Itô’s SDEs, we consider for any finite partition of the time interval [0,T] a system of differential equations, where the multidimensional Brownian motion is replaced by its polygonal approximation and the product between diffusion coefficients and smoothed white noise is interpreted as a Wick product. We remark that in the one dimensional case this type of equations can be reduced, by means of a transformation related to the method of characteristics, to the study of a random ordinary differential equation. Here, instead, one is naturally led to the investigation of a semilinear hyperbolic system of partial differential equations that we utilize for constructing a solution of the Wong–Zakai approximated systems. We show that the law of each element of the approximating sequence solves in the sense of distribution a Fokker–Planck equation and that the sequence converges to the solution of the Itô equation, as the mesh of the partition tends to zero.

Keywords: Stochastic differential equations; Wong–Zakai approximation; Wick product; Fokker–Planck equation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001198
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:141:y:2021:i:c:p:57-78

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2021.07.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:141:y:2021:i:c:p:57-78