Higher-order small time asymptotic expansion of Itô semimartingale characteristic function with application to estimation of leverage from options
Viktor Todorov
Stochastic Processes and their Applications, 2021, vol. 142, issue C, 671-705
Abstract:
In this paper, we derive a higher-order asymptotic expansion of characteristic functions of an Itô semimartingale over asymptotically shrinking time intervals. The leading term in the expansion is determined by the value of the diffusive coefficient at the beginning of the interval. The higher-order terms are determined by the jump compensator as well as the coefficients appearing in the diffusion dynamics. The result is applied to develop a nearly rate-efficient estimator of the leverage coefficient of an asset price, i.e., the coefficient in its volatility dynamics that appears in front of the Brownian motion that drives also the asset price.
Keywords: Characteristic function; Higher-order asymptotic expansion; Itô semimartingale; Leverage effect; Nonparametric inference; Options (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001472
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:142:y:2021:i:c:p:671-705
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.09.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().