Càdlàg rough differential equations with reflecting barriers
Andrew L. Allan,
Chong Liu and
David J. Prömel
Stochastic Processes and their Applications, 2021, vol. 142, issue C, 79-104
Abstract:
We investigate rough differential equations with a time-dependent reflecting lower barrier, where both the driving (rough) path and the barrier itself may have jumps. Assuming the driving signals allow for Young integration, we provide existence, uniqueness and stability results. When the driving signal is a càdlàg p-rough path for p∈[2,3), we establish existence to general reflected rough differential equations, as well as uniqueness in the one-dimensional case.
Keywords: p-variation; Rough path; Rough differential equation; Reflecting barrier; Skorokhod problem; Young integration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:142:y:2021:i:c:p:79-104
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.08.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().