Strong solutions of forward–backward stochastic differential equations with measurable coefficients
Peng Luo,
Olivier Menoukeu-Pamen and
Ludovic Tangpi
Stochastic Processes and their Applications, 2022, vol. 144, issue C, 1-22
Abstract:
This paper investigates solvability of fully coupled systems of forward–backward stochastic differential equations (FBSDEs) with irregular coefficients. In particular, we assume that the coefficients of the FBSDEs are merely measurable and bounded in the forward process. We crucially use compactness results from the theory of Malliavin calculus to construct strong solutions. Despite the irregularity of the coefficients, the solutions turn out to be differentiable, at least in the Malliavin sense and, as functions of the initial variable, in the Sobolev sense.
Keywords: Singular PDEs; Sobolev regularity; FBSDE; Singular coefficients; Strong solutions; Malliavin calculus (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921001812
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:144:y:2022:i:c:p:1-22
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.10.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().