Density estimates and short-time asymptotics for a hypoelliptic diffusion process
Paolo Pigato
Stochastic Processes and their Applications, 2022, vol. 145, issue C, 117-142
Abstract:
We study a system of n differential equations, each in dimension d. Only the first equation is forced by a Brownian motion and the dependence structure is such that, under a local weak Hörmander condition, the noise propagates to the whole system. We prove upper bounds for the transition density (heat kernel) and its derivatives of any order. Then we give precise short-time asymptotics of the density at a suitable central limit time scale. Both these results account for the different non-diffusive scales of propagation in the various components. Finally, we provide a valuation formula for short-maturity at-the-money Asian basket options under correlated local volatility dynamics.
Keywords: Heat kernel estimates; Density derivatives estimates; Short-time asymptotics; Hörmander condition; Asian basket option; Correlated local volatility (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921002015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:145:y:2022:i:c:p:117-142
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.11.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().