EconPapers    
Economics at your fingertips  
 

A weak law of large numbers for realised covariation in a Hilbert space setting

Fred Espen Benth, Dennis Schroers and Almut Veraart

Stochastic Processes and their Applications, 2022, vol. 145, issue C, 241-268

Abstract: This article generalises the concept of realised covariation to Hilbert-space-valued stochastic processes. More precisely, based on high-frequency functional data, we construct an estimator of the trace-class operator-valued integrated volatility process arising in general mild solutions of Hilbert space-valued stochastic evolution equations in the sense of Da Prato and Zabczyk (2014). We prove a weak law of large numbers for this estimator, where the convergence is uniform on compacts in probability with respect to the Hilbert–Schmidt norm. In addition, we determine convergence rates for common stochastic volatility models in Hilbert spaces.

Keywords: Law of large numbers; High-frequency estimation; Quadratic covariation; Volatility; Hilbert space; Evolution equations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441492100209X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:145:y:2022:i:c:p:241-268

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2021.12.011

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:spapps:v:145:y:2022:i:c:p:241-268