EconPapers    
Economics at your fingertips  
 

Moving average Multifractional Processes with Random Exponent: Lower bounds for local oscillations

Antoine Ayache and Florent Bouly

Stochastic Processes and their Applications, 2022, vol. 146, issue C, 143-163

Abstract: In the last few years Ayache, Esser and Hamonier introduced a new Multifractional Process with Random Exponent (MPRE) obtained by replacing the Hurst parameter in a moving average representation of Fractional Brownian Motion through Wiener integral by an adapted Hölder continuous stochastic process indexed by the integration variable. Thus, this MPRE can be expressed as a moving average Itô integral which is a considerable advantage with respect to another MPRE introduced a long time ago by Ayache and Taqqu. Thanks to this advantage, very recently, Loboda, Mies and Steland have derived interesting results on local Hölder regularity, self-similarity and other properties of the recently introduced moving average MPRE and generalizations of it. Yet, the problem of obtaining, on a universal event of probability 1 not depending on the location, relevant lower bounds for local oscillations of such processes has remained open. We solve it in the present article under some conditions.

Keywords: Fractional Brownian Motion; Varying Hurst parameter; Pointwise Hölder regularity; Itô integral (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000035
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:146:y:2022:i:c:p:143-163

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.01.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:146:y:2022:i:c:p:143-163