EconPapers    
Economics at your fingertips  
 

A ℂ0,1-functional Itô’s formula and its applications in mathematical finance

Bruno Bouchard, Grégoire Loeper and Xiaolu Tan

Stochastic Processes and their Applications, 2022, vol. 148, issue C, 299-323

Abstract: Using Dupire’s notion of vertical derivative, we provide a functional (path-dependent) extension of the Itô’s formula of Gozzi and Russo (2006) that applies to C0,1-functions of continuous weak Dirichlet processes. It is motivated and illustrated by its applications to the hedging or superhedging problems of path-dependent options in mathematical finance, in particular in the case of model uncertainty. In this context, we also prove a new regularity result for the vertical derivative of candidate solutions to a class of path-depend PDEs, using an approximation argument which seems to be original and of own interest.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:148:y:2022:i:c:p:299-323

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.02.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:299-323