EconPapers    
Economics at your fingertips  
 

Vertex reinforced random walks with exponential interaction on complete graphs

Rafael A. Rosales, Fernando P.A. Prado and Benito Pires

Stochastic Processes and their Applications, 2022, vol. 148, issue C, 353-379

Abstract: We describe a model for m vertex reinforced interacting random walks on complete graphs with d≥2 vertices. The transition probability of a random walk to a given vertex depends exponentially on the proportion of visits made by all walks to that vertex. The individual proportion of visits is modulated by a strength parameter that can be set equal to any real number. This model covers a large variety of interactions including different vertex repulsion and attraction strengths between any two random walks as well as self-reinforced interactions. We show that the process of empirical vertex occupation measures defined by the interacting random walks converges (a.s.) to the limit set of the flow induced by a smooth vector field. Further, if the set of equilibria of the field is formed by isolated points, then the vertex occupation measures converge (a.s.) to an equilibrium of the field. These facts are shown by means of the construction of a strict Lyapunov function. We show that if the absolute value of the interaction strength parameters are smaller than a certain upper bound, then, for any number of random walks (m≥2) on any graph (d≥2), the vertex occupation measures converge towards a unique equilibrium. We provide two additional examples of repelling random walks for the cases m=d=2 and m∈{3,4,5} with d=2. The latter is used to study some properties of three, four and five exponentially repelling random walks on Z.

Keywords: Reinforced random walk; Stochastic approximation; Stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000631
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:148:y:2022:i:c:p:353-379

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.03.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:353-379