Unique quasi-stationary distribution, with a possibly stabilizing extinction
Aurélien Velleret
Stochastic Processes and their Applications, 2022, vol. 148, issue C, 98-138
Abstract:
We establish sufficient conditions for exponential convergence to a unique quasi-stationary distribution in the total variation norm. These conditions also ensure the existence and exponential ergodicity of the Q-process, the process conditioned upon never being absorbed. The technique relies on a coupling procedure that is related to Harris recurrence (for Markov Chains). It applies to general continuous-time and continuous-space Markov processes. The main novelty is that we modulate each coupling step depending both on a final horizon of time (for survival) and on the initial distribution. By this way, we could notably include in the convergence a dependency on the initial condition. As an illustration, we consider a continuous-time birth–death process with catastrophes and a diffusion process describing a (localized) population adapting to its environment.
Keywords: Quasi-stationary distribution; Survival capacity; Q-process; Harris recurrence; Birth-and-death process; Diffusion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000400
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:148:y:2022:i:c:p:98-138
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.02.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().