EconPapers    
Economics at your fingertips  
 

Unique quasi-stationary distribution, with a possibly stabilizing extinction

Aurélien Velleret

Stochastic Processes and their Applications, 2022, vol. 148, issue C, 98-138

Abstract: We establish sufficient conditions for exponential convergence to a unique quasi-stationary distribution in the total variation norm. These conditions also ensure the existence and exponential ergodicity of the Q-process, the process conditioned upon never being absorbed. The technique relies on a coupling procedure that is related to Harris recurrence (for Markov Chains). It applies to general continuous-time and continuous-space Markov processes. The main novelty is that we modulate each coupling step depending both on a final horizon of time (for survival) and on the initial distribution. By this way, we could notably include in the convergence a dependency on the initial condition. As an illustration, we consider a continuous-time birth–death process with catastrophes and a diffusion process describing a (localized) population adapting to its environment.

Keywords: Quasi-stationary distribution; Survival capacity; Q-process; Harris recurrence; Birth-and-death process; Diffusion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000400
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:148:y:2022:i:c:p:98-138

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.02.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:98-138