Large and moderate deviations for stochastic Volterra systems
Antoine Jacquier and
Alexandre Pannier
Stochastic Processes and their Applications, 2022, vol. 149, issue C, 142-187
Abstract:
We provide a unified treatment of pathwise large and moderate deviations principles for a general class of multidimensional stochastic Volterra equations with singular kernels, not necessarily of convolution form. Our methodology is based on the weak convergence approach by Budhiraja and Dupuis (2019); Dupuis and Ellis (1997). We show in particular how this framework encompasses most rough volatility models used in mathematical finance, yields pathwise moderate deviations for the first time and generalises many recent results in the literature.
Keywords: Stochastic Volterra equations; Large deviations; Moderate deviations; Weak convergence; Rough volatility (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:149:y:2022:i:c:p:142-187
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.03.017
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().