Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons
E. De Santis,
A. Galves,
G. Nappo and
M. Piccioni
Stochastic Processes and their Applications, 2022, vol. 149, issue C, 224-247
Abstract:
We address the questions of identifying pairs of interacting neurons from the observation of their spiking activity. The neuronal network is modeled by a system of interacting point processes with memory of variable length. The influence of a neuron on another can be either excitatory or inhibitory. To identify the existence and the nature of an interaction we propose an algorithm based only on the observation of joint activity of the two neurons in successive time slots. This reduces the amount of computation and storage required to run the algorithm, thereby making the algorithm suitable for the analysis of real neuronal data sets. We obtain computable upper bounds for the probabilities of false positive and false negative detection. As a corollary we prove the consistency of the identification algorithm.
Keywords: Neuronal networks; Multivariate point processes; Stochastic processes with memory of variable length; Interaction graphs; Statistical model selection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:149:y:2022:i:c:p:224-247
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.03.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().