EconPapers    
Economics at your fingertips  
 

Statistical analysis for stationary time series at extreme levels: New estimators for the limiting cluster size distribution

Axel Bücher and Tobias Jennessen

Stochastic Processes and their Applications, 2022, vol. 149, issue C, 75-106

Abstract: The serial dependence of a stationary time series at extreme levels may be captured by the limiting cluster size distribution. New estimators based on a blocks declustering scheme are proposed and analyzed both theoretically and by means of a large-scale simulation study. A sliding blocks version of the estimators is shown to outperform a disjoint blocks version. In contrast to some competitors from the literature, the estimators only depend on one tuning parameter to be chosen by the statistician.

Keywords: Asymptotic theory; Block maxima; Clusters of extremes; Mixing coefficients (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000606
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:149:y:2022:i:c:p:75-106

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.03.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:149:y:2022:i:c:p:75-106