Estimation and control for linear, partially observable systems with non-gaussian initial distribution
Václav E. Benes and
Ioannis Karatzas
Stochastic Processes and their Applications, 1983, vol. 14, issue 3, 233-248
Abstract:
The nonlinear filtering problem of estimating the state of a linear stochastic system from noisy observations is solved for a broad class of probability distributions of the initial state. It is shown that the conditional density of the present state, given the past observations, is a mixture of Gaussian distributions, and is parametrically determined by two sets of sufficient statistics which satisfy stochastic DEs; this result leads to a generalization of the Kalman-Bucy filter to a structure with a conditional mean vector, and additional sufficient statistics that obey nonlinear equations, and determine a generalized (random) Kalman gain. The theory is used to solve explicitly a control problem with quadratic running and terminal costs, and bounded controls.
Keywords: Stochastic; control; Kalman-Bucy; filter; Zakai; equation (search for similar items in EconPapers)
Date: 1983
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(83)90002-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:14:y:1983:i:3:p:233-248
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().