The 1/e-strategy is sub-optimal for the problem of best choice under no information
F. Thomas Bruss and
L.C.G. Rogers
Stochastic Processes and their Applications, 2022, vol. 150, issue C, 1059-1067
Abstract:
This paper answers a long-standing open question concerning the 1/e-strategy for the problem of best choice. N candidates for a job arrive at times independently uniformly distributed in [0,1]. The interviewer knows how each candidate ranks relative to all others seen so far, and must immediately appoint or reject each candidate as they arrive. The aim is to choose the best overall. The 1/e strategy is to follow the rule: ‘Do nothing until time 1/e, then appoint the first candidate thereafter who is best so far (if any).’
Keywords: Optimal stopping; Secretary problem; Proportional increments; Pure birth process; Hamilton–Jacobi–Bellman equation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414921000661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:150:y:2022:i:c:p:1059-1067
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2021.04.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().