Extremes of Lévy-driven spatial random fields with regularly varying Lévy measure
Anders Rønn-Nielsen and
Mads Stehr
Stochastic Processes and their Applications, 2022, vol. 150, issue C, 19-49
Abstract:
We consider an infinitely divisible random field indexed by Rd, d∈N, given as an integral of a kernel function with respect to a Lévy basis with a Lévy measure having a regularly varying right tail. First we show that the tail of its supremum over any bounded set is asymptotically equivalent to the right tail of the Lévy measure times the integral of the kernel. Secondly, when observing the field over an appropriately increasing sequence of continuous index sets, we obtain an extreme value theorem stating that the running supremum converges in distribution to the Fréchet distribution.
Keywords: Extreme value theory; Lévy-based modeling; Regular variation; Geometric probability; Random fields (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000886
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:150:y:2022:i:c:p:19-49
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.04.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().