Stationarity and uniform in time convergence for the graphon particle system
Erhan Bayraktar and
Ruoyu Wu
Stochastic Processes and their Applications, 2022, vol. 150, issue C, 532-568
Abstract:
We consider the long time behavior of heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. The limit is given by a graphon particle system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Under suitable assumptions, including a certain convexity condition, we show the exponential ergodicity for both systems, establish the uniform-in-time law of large numbers for marginal distributions as the number of particles increases, and introduce the uniform-in-time Euler approximation. The precise rate of convergence of the Euler approximation is provided.
Keywords: Graphon particle systems; Heterogeneous interaction; Exponential ergodicity; Long time behavior; Uniform in time law of large numbers; Uniform in time Euler approximations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000862
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:150:y:2022:i:c:p:532-568
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.04.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().