EconPapers    
Economics at your fingertips  
 

Iterated Gilbert mosaics

Francois Baccelli and Ngoc Mai Tran

Stochastic Processes and their Applications, 2022, vol. 150, issue C, 752-781

Abstract: We propose an iterated version of the Gilbert model, which results in a sequence of random mosaics of the plane. We prove that under appropriate scaling, this sequence of mosaics converges to that obtained by a classical Poisson line process with explicit cylindrical measure. Our model arises from considerations on tropical plane curves, which are zeros of random tropical polynomials in two variables. In particular, the iterated Gilbert model convergence allows one to derive a scaling limit for Poisson tropical plane curves. Our work raises a number of open questions at the intersection of stochastic and tropical geometry.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918307476
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:150:y:2022:i:c:p:752-781

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2019.06.016

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:752-781