AR(1) processes driven by second-chaos white noise: Berry–Esséen bounds for quadratic variation and parameter estimation
Soukaina Douissi,
Khalifa Es-Sebaiy,
Fatimah Alshahrani and
Frederi G. Viens
Stochastic Processes and their Applications, 2022, vol. 150, issue C, 886-918
Abstract:
In this paper, we study the asymptotic behavior of the quadratic variation for the class of AR(1) processes driven by white noise in the second Wiener chaos. Using tools from the analysis on Wiener space, we give an upper bound for the total-variation speed of convergence to the normal law, which we apply to study the estimation of the model’s mean-reversion. Simulations are performed to illustrate the theoretical results.
Keywords: Central limit theorem; Berry–Esséen; Malliavin calculus; Parameter estimation; Time series; Wiener chaos (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414919303904
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:150:y:2022:i:c:p:886-918
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.02.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().