MFGs for partially reversible investment
Haoyang Cao and
Xin Guo
Stochastic Processes and their Applications, 2022, vol. 150, issue C, 995-1014
Abstract:
This paper analyzes a class of infinite-time-horizon stochastic games with singular controls motivated from the partially reversible problem. It provides an explicit solution for the mean-field game (MFG), and presents sensitivity analysis to compare the solution for the MFG with that for the single-agent control problem. It shows that in the MFG, model parameters not only affect the optimal strategies as in the single-agent case, but also influence the equilibrium price. It then establishes that the solution to the MFG is an ε-Nash Equilibrium to the corresponding N-player game, with ε=O1N.
Keywords: Mean-field games; Singular controls; Partially reversible investment; ε-Nash equilibrium; Approximation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414920303665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:150:y:2022:i:c:p:995-1014
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2020.09.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().