Strict Kantorovich contractions for Markov chains and Euler schemes with general noise
Lu-Jing Huang,
Mateusz B. Majka and
Jian Wang
Stochastic Processes and their Applications, 2022, vol. 151, issue C, 307-341
Abstract:
We study contractions of Markov chains on general metric spaces with respect to some carefully designed distance-like functions, which are comparable to the total variation and the standard Lp-Wasserstein distances for p≥1. We present explicit lower bounds of the corresponding contraction rates. By employing the refined basic coupling and the coupling by reflection, the results are applied to Markov chains whose transitions include additive stochastic noises that are not necessarily isotropic. This can be useful in the study of Euler schemes for SDEs driven by Lévy noises. In particular, motivated by recent works on the use of heavy tailed processes in Markov Chain Monte Carlo, we show that chains driven by the α-stable noise can have better contraction rates than corresponding chains driven by the Gaussian noise, due to the heavy tails of the α-stable distribution.
Keywords: Markov chain; Strict Kantorovich contractivity; Total variation; Wasserstein distance; Refined basic coupling; Coupling by reflection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922001466
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:151:y:2022:i:c:p:307-341
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.06.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().