Concentration inequalities from monotone couplings for graphs, walks, trees and branching processes
Tobias Johnson and
Erol Peköz
Stochastic Processes and their Applications, 2022, vol. 152, issue C, 1-31
Abstract:
Generalized gamma distributions arise as limits in many settings involving random graphs, walks, trees, and branching processes. Peköz et al. (2016) exploited characterizing distributional fixed point equations to obtain uniform error bounds for generalized gamma approximations using Stein’s method. Here we show how monotone couplings arising with these fixed point equations can be used to obtain sharper tail bounds that, in many cases, outperform competing moment-based bounds and the uniform bounds obtainable with Stein’s method. Applications are given to concentration inequalities for preferential attachment random graphs, branching processes, random walk local time statistics and the size of random subtrees of uniformly random binary rooted plane trees.
Keywords: Concentration inequality; Tail bound; Stein’s method; Preferential attachment graph; Galton–watson process (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922001478
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:152:y:2022:i:c:p:1-31
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.06.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().