EconPapers    
Economics at your fingertips  
 

Monotone convex order for the McKean–Vlasov processes

Yating Liu and Gilles Pagès

Stochastic Processes and their Applications, 2022, vol. 152, issue C, 312-338

Abstract: This paper is a continuation of our previous paper (Liu and Pagès, 2020). In this paper, we establish the monotone convex order (see further (1.1)) between two R-valued McKean–Vlasov processes X=(Xt)t∈[0,T] and Y=(Yt)t∈[0,T] defined on a filtered probability space (Ω,F,(Ft)t≥0,P) by dXt=b(t,Xt,μt)dt+σ(t,Xt,μt)dBt,X0∈Lp(P)withp≥2,dYt=β(t,Yt,νt)dt+θ(t,Yt,νt)dBt,Y0∈Lp(P),where∀t∈[0,T],μt=P∘Xt−1,νt=P∘Yt−1.If we make the convexity and monotony assumption (only) on b and |σ| and if b≤β and |σ|≤|θ|, then the monotone convex order for the initial random variable X0⪯mcvY0 can be propagated to the whole path of processes X and Y. That is, if we consider a non-decreasing convex functional F defined on the path space with polynomial growth, we have EF(X)≤EF(Y); for a non-decreasing convex functional G defined on the product space involving the path space and its marginal distribution space, we have EG(X,(μt)t∈[0,T])≤EG(Y,(νt)t∈[0,T]) under appropriate conditions. The symmetric setting is also valid, that is, if Y0⪯mcvX0 and |θ|≤|σ|, then EF(Y)≤EF(X) and EG(Y,(νt)t∈[0,T])≤EG(X,(μt)t∈[0,T]). The proof is based on several forward and backward dynamic programming principles and the convergence of the truncated Euler scheme of the McKean–Vlasov equation.

Keywords: Convex order; Monotone convex order; McKean–Vlasov process; Truncated Euler scheme (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922001272
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:152:y:2022:i:c:p:312-338

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2022.06.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:152:y:2022:i:c:p:312-338