Deviation inequalities for stochastic approximation by averaging
Xiequan Fan,
Pierre Alquier and
Paul Doukhan
Stochastic Processes and their Applications, 2022, vol. 152, issue C, 452-485
Abstract:
We introduce a class of Markov chains that includes models of stochastic approximation by averaging and non-averaging. Using a martingale approximation method, we establish various deviation inequalities for separately Lipschitz functions of such a chain, with different moment conditions on some dominating random variables of martingale differences. Finally, we apply these inequalities to stochastic approximation by averaging and empirical risk minimization.
Keywords: Deviation inequalities; Martingales; Iterated random functions; Stochastic approximation by averaging; Empirical risk minimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922001600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:152:y:2022:i:c:p:452-485
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.07.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().