Remarks on power-law random graphs
Mei Yin
Stochastic Processes and their Applications, 2022, vol. 153, issue C, 183-197
Abstract:
The theory of graphons is an important tool in understanding properties of large networks. We investigate a power-law random graph model and cast it in the graphon framework. The distinctively different structures of the limit graph are explored in detail in the sub-critical and super-critical regimes. In the sub-critical regime, the graph is empty with high probability, and in the rare event that it is non-empty, it consists of a single edge. Contrarily, in the super-critical regime, a non-trivial random graph exists in the limit, and it serves as an uncovered boundary case between different types of graph convergence.
Keywords: Power-law random graph; Graph limit; Sub-critical and super-critical regimes (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922001764
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:153:y:2022:i:c:p:183-197
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.08.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().